1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection
Meng Wen-Dong1,2,3, Zhang Hai-Feng2,3, Deng Hua-Rong2, Tang Kai2, Wu Zhi-Bo2,3, Wang Yu-Rong1, Wu Guang1, Zhang Zhong-Ping2,3, Chen Xin-Yang2
1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; 2. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China; 3. Key Laboratory of Space Object and Debris Observation, Chinese Academy of Sciences, Nanjing 210008, China
Abstract:Classical satellite laser ranging (SLR) technology based on 532 nm wavelength usually adopts low energy laser to measure cooperative objects. However, for a very weak target, such as debris and lunar reflector arrays, laser ranging system should have much stronger detection capability than the laser ranging system for traditional application. A common way to improve system detection capability is to use high energy laser. With an additional frequency doubling crystal, it is more difficult to make a high energy laser based on 532 nm than that based on 1.06 μm, which restricts the improvement of system detection capability, and also gives rise to the short lifetime, poor system stability problems. Compared with 532 nm laser, the 1.06 μm laser has many advantages of high laser energy and power, high atmospheric transmissivity, and low background noise, thereby making it an ideal substitution for the traditional 532 nm SLR system. In this paper, we comparatively analyze the above-mentiond advantages of the 1.06 μm laser and other system’s key parameters such as detector efficiency and target reflection efficiency, calculate the echo photons one can obtain, and establish a 1.06 μm laser ranging system based on the existing 532 nm SLR at Shanghai Astronomical Observatory. Owing to the using of an InGaAs single photon detector, the system turns very compact, low cost, easy-to-be-installed and has almost no additional operation complexity than the 532 nm system. With this system, the high precision 1.06 μm laser ranging for cooperative objects based on InGaAs detector is carried out for the first time in China, and a ranging for space debris 1500 km away can also be realized. The ranging experiment shows with the same laser, SLR using 1.06 μm output reaches a detection efficiency of 7 times the detection efficiency the SLR using 532 nm output reaches, and the background noise only 1/5. This approves the advantages and feasibility of 1.06 μm system, and also shows its great potential application prospects in the high precision weak target laser detection in the day and night time. This paper provides a very easy operation, high compact and low cost method for the future high precision weak target laser ranging.
Hu J F 2003 Ph. D. Dissertation (Shanghai:Shanghai Astronomical Observatory, Chinese Academy of Sciences) (in Chinese)[扈荆夫 2003 博士学位论文 (上海:中国科学院研究生院 (上海天文台))]
[2]
Qin X P 2003 M.S. Thesis (Zhengzhou:Information Engineering University) (in Chinese)[秦显平 2003 硕士学位论文 (郑州:中国人民解放军信息工程大学)]
[3]
Yang F M, Tan D T, Xiao Z K, Li Z Y, Lu W H, Chen W Z, Cai S F, Chen F X, Zhang Z P, Hu Z Q 1986 Chin. Sci. Bull. 31 1161[杨福民, 谭德同, 肖炽焜, 李振宇, 陆文虎, 陈婉珍, 蔡世福, 陈富祥, 张忠平, 胡振琪 1986 科学通报 31 1161]
[4]
He M F, Tapley B D, Eanes R J 1980 Scientia Sinica Physica, Mechanica & Astronomica 25 636[何妙福, Tapley B D, Eanes R J 1980 中国科学:物理学 力学 天文学 25 636]
[5]
Ding J, Qu F, Li Q, Cheng B H 2010 Science of Surveying & Mapping 35 5[丁剑, 瞿锋, 李谦, 程伯辉 2010 测绘科学 35 5]
[6]
Zhu X H, Yang L, Sun F P, Wang R 2014 Acta Geod. Cartogr. Sin. 43 240[朱新慧, 杨力, 孙付平, 王刃 2014 测绘学报 43 240]
[7]
Degnan J 2002 J. Geodyn. 34 551
[8]
Liu J, Wang R L, Zhang H B, Xiao Z 2004 Chin. J. Space Sci. 24 462[刘静, 王荣兰, 张宏博, 肖佐 2004 空间科学学报 24 462]
[9]
Zhang Z P, Cheng Z E, Zhang H F, Deng R H, Jiang H 2017 Infrared Laser Eng. 46 8[张忠萍, 程志恩, 张海峰, 邓华荣, 江海 2017 红外与激光工程 46 8]
[10]
Song Q L, Liang Z P, Dong X, Han X W, Fan C B 2016 Opt. & Precision Eng. 24 175[宋清丽, 梁智鹏, 董雪, 韩兴伟, 范存波 2016 光学精密工程 24 175]
[11]
Li Z L, Zhang H T, Li Y Q, Fu H L, Zhai D S 2017 Infrared Laser Eng. 46 269[李祝莲, 张海涛, 李语强, 伏红林, 翟东升 2017 红外与激光工程 46 269]
[12]
Schreiber U, Haufe K H, Dassing R 1993 8th International Workshop on Laser Ranging Instrumentation Annapolis, MD USA, May 18−22, 1992 p7
[13]
Courde C, Torre J M, Samain E, Martinot-Lagarde G, Aimar M, Albanese D, Exertier P, Feraudy D, Fienga A, Mariey H, Métris G, Viot H, Viswanathan V. Astron. Astrophys. 602 A90
[14]
Smith C, Greene B 2006 The Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, September 10−14, 2006 id.E86
[15]
Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848
[16]
Shell J R 2010 Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, HI, USA, September 14−17, 2010 p E42
[17]
Degnan J J 1993 Contributions of Space Geodesy to Geodynamics:Technology 25 133
[18]
Princeton Lightwave Inc. https://sphotonics.ru/upload/iblock/21c/pga_series_single_photon_counting_avalanche_photo-diode.pdf[2019-8-20]
[19]
Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. Chin. Phys. Mechanics & Astronomy 60 120314
[20]
Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535
[21]
Jorgensen K, Jarvis K S, Hamada K, Parr-Thumm T L, Africano J L, Stansbery E G 2003 Proc. of the 54th International Astronautical Congress Bremen, Germany, September 29−October 3, 2003 p1
[22]
Victoria M, Domínguez C, Askins S, Antón I, Sala G 2012 Jpn. J. Appl. Phys. AM15D 10ND06
[23]
Yang F M, Xiao Z K, Chen W Z, Zhang Z P, Tan D T, Gong X D, Chen J P, Huang L, Zhang J H 1998 Sci. Chin. (Series A) 28(11) 1048[杨福民, 肖炽焜, 陈婉珍, 张忠萍, 谭德同, 龚向东, 陈菊平, 黄力, 章建华 1998 中国科学(A辑) 28(11) 1048]